89 research outputs found

    Advanced NOMA Assisted Semi-Grant-Free Transmission Schemes for Randomly Distributed Users

    Full text link
    Non-orthogonal multiple access (NOMA) assisted semi-grant-free (SGF) transmission has recently received significant research attention due to its outstanding ability of serving grant-free (GF) users with grant-based (GB) users' spectrum, {\color{blue}which can greatly improve the spectrum efficiency and effectively relieve the massive access problem of 5G and beyond networks. In this paper, we investigate the performance of SGF schemes under more practical settings.} Firstly, we study the outage performance of the best user scheduling SGF scheme (BU-SGF) by considering the impacts of Rayleigh fading, path loss, and random user locations. Then, a fair SGF scheme is proposed by applying cumulative distribution function (CDF)-based scheduling (CS-SGF), which can also make full use of multi-user diversity. Moreover, by employing the theories of order statistics and stochastic geometry, we analyze the outage performances of both BU-SGF and CS-SGF schemes. Results show that full diversity orders can be achieved only when the served users' data rate is capped, which severely limit the rate performance of SGF schemes. To further address this issue, we propose a distributed power control strategy to relax such data rate constraint, and derive closed-form expressions of the two schemes' outage performances under this strategy. Finally, simulation results validate the fairness performance of the proposed CS-SGF scheme, the effectiveness of the power control strategy, and the accuracy of the theoretical analyses.Comment: 41 pages, 8 figure

    Trajectory and Power Design for Aerial Multi-User Covert Communications

    Full text link
    Unmanned aerial vehicles (UAVs) can provide wireless access to terrestrial users, regardless of geographical constraints, and will be an important part of future communication systems. In this paper, a multi-user downlink dual-UAVs enabled covert communication system was investigated, in which a UAV transmits secure information to ground users in the presence of multiple wardens as well as a friendly jammer UAV transmits artificial jamming signals to fight with the wardens. The scenario of wardens being outfitted with a single antenna is considered, and the detection error probability (DEP) of wardens with finite observations is researched. Then, considering the uncertainty of wardens' location, a robust optimization problem with worst-case covertness constraint is formulated to maximize the average covert rate by jointly optimizing power allocation and trajectory. To cope with the optimization problem, an algorithm based on successive convex approximation methods is proposed. Thereafter, the results are extended to the case where all the wardens are equipped with multiple antennas. After analyzing the DEP in this scenario, a tractable lower bound of the DEP is obtained by utilizing Pinsker's inequality. Subsequently, the non-convex optimization problem was established and efficiently coped by utilizing a similar algorithm as in the single-antenna scenario. Numerical results indicate the effectiveness of our proposed algorithm.Comment: 30 pages, 9 figures, submitted to the IEEE journal for revie

    Dynamic Resource Management in CDRT Systems through Adaptive NOMA

    Full text link
    This paper introduces a novel adaptive transmission scheme to amplify the prowess of coordinated direct and relay transmission (CDRT) systems rooted in non-orthogonal multiple access principles. Leveraging the maximum ratio transmission scheme, we seamlessly meet the prerequisites of CDRT while harnessing the potential of dynamic power allocation and directional antennas to elevate the system's operational efficiency. Through meticulous derivations, we unveil closed-form expressions depicting the exact effective sum throughput. Our simulation results adeptly validate the theoretical analysis and vividly showcase the effectiveness of the proposed scheme.Comment: 11 pages, 7 figures, submitted to IEEE journal for revie

    The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development

    Get PDF
    The elongator complex subunit 2 (ELP2) protein, one subunit of an evolutionarily conserved histone acetyltransferase complex, has been shown to participate in leaf patterning, plant immune and abiotic stress responses in Arabidopsis thaliana. Here, its role in root development was explored. Compared to the wild type, the elp2 mutant exhibited an accelerated differentiation of its root stem cells and cell division was more active in its quiescent centre (QC). The key transcription factors responsible for maintaining root stem cell and QC identity, such as AP2 transcription factors PLT1 (PLETHORA1) and PLT2 (PLETHORA2), GRAS transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX5 transcription factor WOX5, were all strongly down-regulated in the mutant. On the other hand, expression of the G2/M transition activator CYCB1 was substantially induced in elp2. The auxin efflux transporters PIN1 and PIN2 showed decreased protein levels and PIN1 also displayed mild polarity alterations in elp2, which resulted in a reduced auxin content in the root tip. Either the acetylation or methylation level of each of these genes differed between the mutant and the wild type, suggesting that the ELP2 regulation of root development involves the epigenetic modification of a range of transcription factors and other developmental regulators

    3-D Hybrid VLC-RF Indoor IoT Systems with Light Energy Harvesting

    Get PDF
    In this paper, a 3-dimensional (3-D) hybrid visible light communication (VLC)-radio frequency (RF) indoor internet of things system with spatially random terminals with one photodiode (e.g., indoor sensors: temperature sensors, humidity sensors, and indoor air quality sensors) is considered. Specifically, homogeneous Poisson point process is adopted to model to the distribution of the terminals, which means that the number of the terminals obeys Poisson distribution, and the positions of the terminals are uniformly distributed. VLC and RF communications are employed over downlink and uplink, respectively. Meanwhile, the terminals are designed to harvest the energy from the light emitted by the light-emitting diode over the downlink, which is used for the transmissions over the uplink. The light energy harvesting model is considered after introducing the line of sight propagation model for VLC. Then, the outage performance has been studied for the VLC downlink and non-orthogonal multiple access schemes over the RF uplink, respectively, by using stochastic geometry theory, while considering the randomness of the number of the terminals, and all terminals are spatially and randomly distributed in the 3-D room and all RF uplinks follow Rician fading. Finally, the approximated analytical expressions for the outage probability are derived and verified through Monte Carlo simulations

    On Secure NOMA-Aided Semi-Grant-Free Systems

    Full text link
    Semi-grant-free (SGF) transmission scheme enables grant-free (GF) users to utilize resource blocks allocated for grant-based (GB) users while maintaining the quality of service of GB users. This work investigates the secrecy performance of non-orthogonal multiple access (NOMA)-aided SGF systems. First, analytical expressions for the exact and asymptotic secrecy outage probability (SOP) of NOMA-aided SGF systems with a single GF user are derived. Then, the SGF systems with multiple GF users and a best-user scheduling scheme is considered. By utilizing order statistics theory, closed-form expressions for the exact and asymptotic SOP are derived. Monte Carlo simulation results demonstrate the effects of system parameters on the SOP of the considered system and verify the accuracy of the developed analytical results. The results indicate that both the outage target rate for GB and the secure target rate for GF are the main factors of the secrecy performance of SGF systems

    Lysine-specific demethylase 5C promotes hepatocellular carcinoma cell invasion through inhibition BMP7 expression

    Get PDF
    The primers used for the amplification of the indicated genes.(DOCX 17 kb
    corecore